
No.

Name

84
Date SDGs

May. 2024

Daijiro Kabata, Mototsugu Shintani

CSRDA supports the Sustainable Development Goals

Double/debiased Machine Learning for Causal
Inference on Survival Function



Double/debiased Machine Learning for Causal

Inference on Survival Function

Daijiro Kabata1 and Mototsugu Shintani∗2

1Department of Medical Statistics, Osaka Metropolitan University

2Faculty of Economics, The University of Tokyo

This version: May 2024

Abstract

This paper discusses the use of double/debiased machine learning (DML) for es-

timating the average treatment effect (ATE) on a survival function using pseudo-

observations. Through simulations, we demonstrate the double robustness prop-

erty of our method and its improved performance, compared to existing estimators

in the presence of many covariates. In our empirical example, the method is applied

in evaluating the effect of the e-learning program participation on the job-finding

rate among individuals who are seeking employment.
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1 Introduction

In the field of causal inference, doubly robust (DR) estimators have been widely

used as a workhorse method because of their robustness against potential mis-

specifications in either propensity scores or outcome equations. Within the class

of DR estimators, Wang (2018) has proposed an estimator for the survival func-

tion using pseudo-observations. In this paper, we utilize double/debiased machine

learning (DML), initially developed by Chernozhukov et al. (2018), to estimate a

survival function using pseudo-observations. Through simulations, we investigate

its performance compared to existing estimators, such as the inverse probabil-

ity weighted (IPW) estimator and the DR estimator, particularly in the presence

of many covariates. We also apply our method in estimating the effect of the

e-learning program participation on reducing unemployment duration.

2 Estimators of the Average Treatment Effect on

Survival Probability using Pseudo-observations

Let T be the survival time to the first event, C be the censoring time, X =

(X1, X2, . . . , Xp) be a p-dimensional vector of covariates with distribution F (X),

andD ∈ {0, 1} be a binary treatment variable, whereD = 1 signifies the treatment

group. The conditional survival probability with covariate X under D = d at time
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t is given by Sd(t|X) = E[I{T > t}|D = d,X], and the unconditional survival

function is given by Sd(t) =
∫
Sd(t|X)dF (X). Our target is the average treatment

effect (ATE) on survival probability defined as

θ(t) = S1(t)− S0(t).

The survival function Sd(t) can be calculated by the Kaplan-Meier estimator Ŝd(t)

using observation (Ti, Ci, Xi) for i = 1, . . . , N . However, in general, a propensity

score m(X) = Pr[D = 1|X] is a function of X, and the dependence of X and D

implies that θ̂(t) = Ŝ1(t)− Ŝ0(t) is a biased estimator of the ATE.

To reduce bias from confounding, one can utilize a standard causal inference

procedure applied to outcome Sd(t|Xi), namely, the individual survival function

of each individual i. While individual outcome Sd(t|Xi) is not directly observed,

Andersen, Klein, and Rosthøj (2003) and Klein et al. (2007) proposed using a

pseudo-observation of individual i defined by

Ŝi
d(t) = NŜd(t)− (N − 1)Ŝ−i

d (t)

where Ŝd(t) is the Kaplan-Meier estimator using all observations {(Ti, Ci, Xi)}Ni=1,

and Ŝ−i
d (t) is the leave-one-out estimator using {(Tj, Cj, Xj)}Nj=1,j ̸=i. As shown by

Graw, Gerds, and Schumacher (2009), E[Ŝi
d(t)|Xi] → Sd(t|Xi) asN → ∞. Relying
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on this asymptotic property of the pseudo-observations, Andersen, Syriopoulou,

and Parner (2017) propose the IPW estimator of the ATE on survival probability

given by

θ̂IPW (t) =

∑N
i=1DiŜ

i
1(t)/m̂(Xi)∑N

i=1Di/m̂(Xi)
−
∑N

i=1 (1−Di)Ŝ
i
0(t)/(1− m̂(Xi))∑N

i=1 (1−Di)/(1− m̂(Xi))

where m̂(X) is an estimator ofm(X). Furthermore, Wang (2018) also uses pseudo-

observations and considers the DR estimator of the ATE on survival probability

given by

θ̂DR(t) =
1

N

N∑
i=1

{Ŝ1(t|Xi)− Ŝ0(t|Xi)}

+

∑N
i=1Di(Ŝ

i
1(t)− Ŝ1(t|Xi))/m̂(Xi)∑N
i=1Di/m̂(Xi)

−
∑N

i=1(1−Di)(Ŝ
i
0(t)− Ŝ0(t|Xi))/(1− m̂(Xi))∑N

i=1 (1−Di)/(1− m̂(Xi))
.

where Ŝd(t|X) is an estimator of outcome equation Sd(t|X) as a function of X.

For example, we can employ the Cox regression model or a generalized estimating

equation for Ŝd(t|X). The IPW estimator is asymptotically unbiased when m̂(X)

is correctly specified. Furthermore, the DR estimator is asymptotically unbiased

when either m̂(X) or Ŝd(t|X) is correctly specified (double robustness).

In general, the overfitting in the nuisance function estimation can lead to bias

in the estimation of the ATE. Chernozhukov et al. (2018) have introduced the
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DML method based on cross-fitting to address this overfitting issue. Here, we

also apply the DML to pseudo-observations in the estimation of ATE on survival

probability.

For simplification, we assume that N is a multiple number of integer K. Con-

sider a K-fold random partition (Ik)
K
k=1 of {1, . . . , N} such that the size of each

fold Ik is fixed at n = N/K. For each subsample Ik, define its complement as

Ick = {1, . . . , N} \ Ik. In the first step, estimate the ATE using each subsample Ik

(k = 1, . . . , K) by

ψ̂DML(t; Ik, I
c
k) =

1

n

∑
i∈Ik

{Ŝ1(t|Xi; I
c
k)− Ŝ0(t|Xi; I

c
k)}

+

∑
i∈Ik Di(Ŝ

i
1(t)− Ŝ1(t|Xi; I

c
k))/m̂(Xi; I

c
k)∑

i∈Ik Di/m̂(Xi; Ick)

−
∑

i∈Ik(1−Di)(Ŝ
i
0(t)− Ŝ0(t|Xi; I

c
k))/(1− m̂(Xi; I

c
k))∑

i∈Ik (1−Di)/(1− m̂(Xi; Ick))

where Ŝd(t|Xi; I
c
k) and m̂(Xi; I

c
k) are the estimators of Sd(t|Xi; I

c
k) and m(Xi; I

c
k),

respectively. In the second step, aggregate ψ̂DML(t; Ik, I
c
k) for all k ∈ {1, . . . , K},

and the final ATE estimator based on DML is given by

θ̂DML(t) =
1

K

K∑
k=1

ψ̂DML(t; Ik, I
c
k).

Chernozhukov et al. (2018) suggest iteratively performing cross-fitting and utilizing

the mean or median value to enhance the ATE estimator’s stability against data-
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splitting randomness.

3 Simulation Experiments

We conduct two simulation experiments to assess the performance of the proposed

estimator. The first experiment (DGP1) evaluates the effect of misspecification on

the IPW, DR, and DML estimators. The second experiment (DGP2) compares

the sensitivity to overfitting between the DR estimator and the DML estimator.

3.1 DGP1

In the first simulation experiment, we fix the sample size at N = 200 and the num-

ber of covariates at p = 8. First, we generate the covariatesXi = (X1i, X2i, . . . , X8i)

for i = 1, . . . , 200 from multivariate standard normal distribution with unit vari-

ance and covariance where only pairs (X1, X2), (X3, X4), (X5, X6), and (X7, X8)

are correlated with a correlation coefficient of 0.2. Then, the binary treatment

variable Di is generated by a Bernoulli distribution with the true propensity score

given by

pi =

{
1 + exp

(
−α0 −

p∑
j=1

αjXji

)}−1

where (α1, .., α8) = (1.0, 1.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0). To fix the treatment

prevalence at around 50 percent, the intercept α0 is set at −0.7. The continuous
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time variable Ti is generated from the exponential distribution with an event rate

hi = exp

(
β0 + γDi +

p∑
j=1

βjXji

)

where (β1, .., β8) = (1.0, 1.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0) and γ = 0. The intercept

β0 is set at −0.7 so that the event rate is fixed at around 50 percent. In the above

setup, X1 and X2 can be considered confounders that affect both the treatment

selection and the outcome. On the other hand, X3 and X4 are covariates only

affecting the treatment, while X5 and X6 are covariates only affecting the outcome.

Furthermore, X7 and X8 do not relate to the treatment and outcome.

For all estimators, we estimated the propensity score using the lasso. For DML,

the conditional average survival function is estimated using the regularized Cox

model. In the cross-fitting part of DML, we fixed K = 5. To incorporate the

uncertainty induced by sample splitting, we iterate the estimating procedure 5

times and aggregate these estimates as the mean value. We fix the time point

at t = 3 and compute θ̂IPW (3), θ̂DR(3), and θ̂DML(3) to estimate the true ATE

θ(3) = 0.

To assess the robustness against the misspecification of the nuisance functions,

we consider four cases: (1) both the propensity score and the survival function are

correctly specified; (2) the propensity score is correctly specified but the survival

function is misspecified; (3) the propensity score is misspecified but the survival
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function is correctly specified; and (4) both models are misspecified. We provide

the misspecified models by excluding confounders (X1 and X2) from each function.

The results of experiments are provided in Figure 1, which shows the empirical

distribution from 1, 000 replications, and in Table 1, which presents the absolute

bias, standard deviation (SD) and root mean square error (RMSE). In case 1, where

nuisance functions for treatment and survival are correctly specified, all estimators

perform relatively well. However, bias, SD, and RMSE of the IPW estimator are

slightly larger than those of the DR and DML estimators. In case 2, with a

correctly specified propensity score model, all estimators perform similarly. In

case 3, with a misspecified propensity score model, the bias of the IPW estimator

becomes much larger than that of two other estimators. In case 4, with both

nuisance functions misspecified, all estimators lead to large biases. These results

confirm the doubly robust properties of the DR and DML estimators. Both doubly

robust estimators perform equally well when the number of covariates is relatively

small.

3.2 DGP2

We now consider the effect of a relatively large number of covariates on the per-

formance of two doubly robust estimators, the DR and DML estimators. The

simulation setting is similar to case 1 of DGP1, except for the sample sizes and

the number of confounders. In particular, the number of confounders have in-
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creased from 2 to 94 with the correlation coefficients of all confounders at 0.2. The

corresponding parameters are (α1, .., α94) = (1.0, ..., 1.0) for the propensity score

and (β1, .., β94) = (1.0, ..., 1.0) for the survival function. The other 6 covariates are

generated in the same way as in DGP1 with the same set of parameters. With

the number of covariates fixed at p = 100, we consider sample sizes N of 1000,

500, 300, 250, and 200 so that the corresponding ratio of covariate parameters to

the number of subjects, namely p/N , is 0.1, 0.2, 0.3, 0.4, and 0.5. The intercepts

α0 and β0 are set at -20 to fix the prevalence proportion of the treatment and the

event at around 50 percent.

The results of experiments are provided in Figure 2, which shows how the

RMSEs of θ̂DR(3) and θ̂DML(3) respond to p/N . As the p/N ratio increases, the

RMSEs of both estimators increase. However, the RMSE of the DML estimator

increases much more slowly than the DR estimator. This difference is mainly

due to the smaller bias of the DML estimator as the SD of the two estimators

are almost the same (see Supplementary Table 1 for the details). This result

suggests the DML suffers less from the bias caused by overfitting, compared to

the DR estimator. This finding is consistent with the advantage of the DML as

emphasized in Chernozhukov et al. (2018). This observation also provides the

rationale for the use of cross-fitting in estimating the nuisance function in the DR

estimator of Wang (2018).
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4 An Empirical Application

We apply the proposed method to estimate the ATE on unemployment duration

to evaluate the effect of participating in an e-learning program. We utilize the

Japanese Panel Study of Employment Dynamics (JPSED) dataset, which is pro-

vided by the Recruit Works Institute. The JPSED collects data on employment

status among Japanese individuals, including information on individual character-

istics such as gender, age, occupation, residential area, and education level. From

the 2020 survey, we extract 2,833 individuals who resigned from their previous

work in 2019. We investigate whether the experience of participating in an e-

learning program helped to reduce the unemployment duration in 2019. In our

sample of 2,833 individuals, 141 participated in the e-learning program and will

be considered as the treatment group. The data indicate that the treatment group

comprises more males and individuals with higher education levels than the control

group (see Supplementary Table 2 for the details). Figure 3 shows the survival

curves of two groups, estimated using the IPW, DR, and DML estimators, with

45 individual characteristics as covariates. In Table 2, the estimated ATEs at 3, 6,

and 9 months are all negative, indicating that the unemployment duration tends to

be shorter for the treatment group. The 95 percent confidence intervals, calculated

using the procedure described in Chernozhukov et al. (2018), exclude the zero and

positive regions. Hence, we conclude that participating in an e-learning program
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significantly increases the job-finding rate among individuals seeking employment.

5 Concluding Remarks

This paper discusses the use of DML for estimating the ATE on a survival function

using pseudo-observations. Through simulations, we have demonstrated the double

robustness property of our method, as well as that of the DR estimator. We also

have confirmed the improved performance, compared to DR estimators in the

presence of many covariates. Our results show the advantage of using DML in the

context of the survival analysis.
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Tables

Table 1. Performance of ATE estimators

Case
Propensity

Score

Survival

Function

Metrics IPW DR DML

Absolute Bias 0.057 0.002 0.006

SD 0.176 0.168 0.1631 Correct Correct

RMSE 0.185 0.168 0.163

Absolute Bias 0.057 0.065 0.062

SD 0.176 0.177 0.1672 Correct Incorrect

RMSE 0.185 0.189 0.179

Absolute Bias 0.267 0.037 0.025

SD 0.135 0.132 0.1313 Incorrect Correct

RMSE 0.299 0.138 0.133

Absolute Bias 0.267 0.271 0.269

SD 0.135 0.134 0.1334 Incorrect Incorrect

RMSE 0.299 0.302 0.300
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Table 2. The ATE of e-learning program participation on

unempolyment probability

Time after becoming unemployed

Estimators 3 months 6 months 9 months

IPW -0.256 [-0.260, -0.252] -0.219 [-0.222, -0.215] -0.159 [-0.162, -0.156]

DR -0.253 [-0.257, -0.249] -0.215 [-0.218, -0.212] -0.156 [-0.159, -0.154]

DML -0.248 [-0.252, -0.243] -0.209 [-0.213, -0.206] -0.154 [-0.158, -0.151]

Notes: The 95 percent confidence intervals are shown in parentheses.
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Figures

Figure 1. Distribution of ATE estimates
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Figure 2. Effect of increasing relative number of covariates
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Figure 3. Effect of e-learning program participation on survival curves

for unemployment duration
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Supplementary Table 1. Performance of ATE estimators and relative

number of covariates

p/N ratios Metrics DR DML

Absolute Bias 0.568 0.561

SD 0.019 0.0190.1

RMSE 0.568 0.561

Absolute Bias 0.582 0.569

SD 0.025 0.0250.2

RMSE 0.583 0.569

Absolute Bias 0.593 0.570

SD 0.033 0.0330.3

RMSE 0.594 0.571

Absolute Bias 0.598 0.570

SD 0.032 0.0340.4

RMSE 0.599 0.571

Absolute Bias 0.603 0.570

SD 0.041 0.0440.5

RMSE 0.604 0.572



Supplementary Table 2. Variables in the data

e-learning program participation
Characteristic

Overall
(N = 2,833)

No
(N = 2,692)

Yes
(N = 141)

Gender
Female 1,558 (55%) 1,494 (55%) 64 (45%)
Male 1,275 (45%) 1,198 (45%) 77 (55%)
Age at retirement 42.29 (14.87) 42.28 (14.93) 42.51 (13.77)
Current residential area
Hokkaido region 151 (5.3%) 145 (5.4%) 6 (4.3%)
Tohoku region 214 (7.6%) 204 (7.6%) 10 (7.1%)
North Kanto region 137 (4.8%) 128 (4.8%) 9 (6.4%)
South Kanto region 880 (31%) 827 (31%) 53 (38%)
Hokuriku region 112 (4.0%) 106 (3.9%) 6 (4.3%)
Tokai region 328 (12%) 318 (12%) 10 (7.1%)
Kansai region 495 (17%) 471 (17%) 24 (17%)
Chugoku region 141 (5.0%) 136 (5.1%) 5 (3.5%)
Shikoku region 77 (2.7%) 72 (2.7%) 5 (3.5%)
Kyushu region 298 (11%) 285 (11%) 13 (9.2%)
Final education
Completed primary/junior high school 76 (2.7%) 76 (2.8%) 0 (0%)
Completed high school 997 (35%) 957 (36%) 40 (28%)
Completed vocational school (technical college) 424 (15%) 409 (15%) 15 (11%)
Completed junior college 294 (10%) 282 (10%) 12 (8.5%)
Completed technical college 39 (1.4%) 34 (1.3%) 5 (3.5%)
Completed university 870 (31%) 812 (30%) 58 (41%)
Completed graduate school (master’s/doctoral program) 94 (3.3%) 84 (3.1%) 10 (7.1%)
Currently enrolled 39 (1.4%) 38 (1.4%) 1 (0.7%)
Presence of spouse
No spouse 1,432 (51%) 1,359 (50%) 73 (52%)
Spouse 1,401 (49%) 1,333 (50%) 68 (48%)
Presence of children
No children 1,605 (57%) 1,522 (57%) 83 (59%)
Children 1,228 (43%) 1,170 (43%) 58 (41%)
Residential status
Own home 1,599 (56%) 1,520 (56%) 79 (56%)
Rental/Other 1,234 (44%) 1,172 (44%) 62 (44%)
Main earner
Self 1,391 (49%) 1,301 (48%) 90 (64%)
Spouse 821 (29%) 794 (29%) 27 (19%)
Other 621 (22%) 597 (22%) 24 (17%)
Reason for leaving previous job
End of contract period 421 (15%) 401 (15%) 20 (14%)
Retirement 158 (5.6%) 147 (5.5%) 11 (7.8%)
Company bankruptcy/business closure 111 (3.9%) 106 (3.9%) 5 (3.5%)
Retirement recommendation 61 (2.2%) 58 (2.2%) 3 (2.1%)
Dismissal 50 (1.8%) 50 (1.9%) 0 (0%)
Transfer 17 (0.6%) 16 (0.6%) 1 (0.7%)
Early retirement 43 (1.5%) 42 (1.6%) 1 (0.7%)
Dissatisfaction with wage 194 (6.8%) 181 (6.7%) 13 (9.2%)
Dissatisfaction with working conditions or workplace 218 (7.7%) 203 (7.5%) 15 (11%)
Dissatisfaction with human relationships 352 (12%) 343 (13%) 9 (6.4%)
Dissatisfaction with job content 264 (9.3%) 250 (9.3%) 14 (9.9%)
Anxiety about company future or employment stability 158 (5.6%) 144 (5.3%) 14 (9.9%)
Personal physical injury or illness 120 (4.2%) 119 (4.4%) 1 (0.7%)
Personal mental illness 137 (4.8%) 133 (4.9%) 4 (2.8%)
Marriage 63 (2.2%) 62 (2.3%) 1 (0.7%)
Pregnancy/Childbirth 70 (2.5%) 69 (2.6%) 1 (0.7%)
Child-rearing 35 (1.2%) 34 (1.3%) 1 (0.7%)
Caretaking 41 (1.4%) 40 (1.5%) 1 (0.7%)
Spouse’s transfer 39 (1.4%) 36 (1.3%) 3 (2.1%)
Independence 22 (0.8%) 22 (0.8%) 0 (0%)
Taking over family business or assisting family’s work 14 (0.5%) 12 (0.4%) 2 (1.4%)
Pursuing education or obtaining qualification 35 (1.2%) 32 (1.2%) 3 (2.1%)
Other 210 (7.4%) 192 (7.1%) 18 (13%)

Notes: Mean for age at retirement with standard deviation in parenthesis. Count
for other variables with proportion in parenthesis.
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